
1

MetaData for Efficient, Secure and Extensible
Access to Data in a Medical Grid

Jean-Marc Pierson1 Ludwig Seitz1 Hector Duque1,2 Johan Montagnat2

1LIRIS, CNRS FRE 2672
2CREATIS, CNRS UMR 5515, INSERM U630

INSA de Lyon, b̂at B. Pascal, 7, av. Jean Capelle, 69621 Villeurbanne cedex, FRANCE
{ludwig.seitz, jean-marc.pierson}@liris.cnrs.fr,{johan,duque}@creatis.insa-lyon.fr

Abstract— In this paper we present the metadata usage in a
medical imaging project grid. Metadata represent data about the
data: In our case, the data are medical images and the metadata
store relative information on the patient and hospital records, or
even data about the image algorithms used in our application
platform. Metadata are either static or dynamically constructed
after computations on data. We show how the metadata is used,
produced and stored to provide a secure and efficient access to
medical data (and metadata) through a dedicated architecture.
Experiments include times to access data and to secure the
transactions.

Keywords: metadata management, access control, medical
grids

I. I NTRODUCTION

In the past years, Grid Computing has emerged as a new tool
to accommodate the needs of process intensive applications
(such as weather forecast, nuclear simulation, ...) and the needs
of scientists around the world. Focus has long been put on the
efficient use of computing resources, in terms of scheduling,
resources discovery and usage, in projects like Globus [8] or
Legion [10]. Interest in the data being manipulated by grids
has grown only in the very last years, when the amount of
data used or produced in grid applications started to become
a real problem while no (or almost no) research was driven
for their management. The DataGrid [6] project for instance
was one of the first project to focus also on data.

On the other hand, Grids are becoming popular among the
Information Systems community for their ability to handle
tons of data. From an IS point of view, application data is
not considered as raw data like in many grid applications but
rather as semantically rich data or data enriched by the use of
metadata. The current interest in semantic grids and metadata
management at the Global Grid Forum is an indicator of this
trend.

Finally, metadata might be dynamic. Indeed, some compu-
tation made on the grids on data may be stored for future
use and becomes not only data, but also metadata on the data
itself. The link between original data and newly produced data
must somehow exist. We believe that the dynamic metadata
will be more and more numerous, thus motivating this work
on their management.

This work is partly supported by the Région Rĥone-Alpes project RAG-
TIME, the French ministry of research ACI-GRID program, and the ECOS
Nord Committee (action C03S02).

Ability to handle raw data and semantically enriched data in
the same architecture is mandatory for future grid expansion
and usage. Medical grids provide a good field of experiment
for data and metadata management. Indeed, data range from
raw images from an acquisition device to patient related data,
with a need for privacy protection and hybrid requests on
images and patient data.

The rest of the document is organized as follows : Section II
describes the motivation for metadata in the medical field and
section III gives a short overview of our data and metadata
access architecture. Section IV provides details on the usage of
static and dynamic metadata in our system, for access control
and efficient access. Section V deals with implementation
and experiments issues. Section VI mentions related works
and discusses our metadata management while section VII
concludes.

II. M OTIVATION FOR MEDICAL METADATA

Medical images have become a key investigation tool for
medical diagnosis and pathology follow-ups. Digital imaging
is becoming the standard for all image acquisition devices
and with the generalization of digital acquisition, there is an
increasing need for data storage and retrieval. The DICOM
(Digital Image and COmmunication in Medicine) has recently
emerged as the standard for image storage. DICOM describes
an image format, a communication protocol between an image
server and its clients, and other image related capabilities.
On top of such a standard, PACS (Picture Archiving and
Communication Systems) are deployed to manage data storage
and data flow inside hospitals.

However, medical images by themselves are not sufficient
for most medical applications. A physician is not analyzing
images but he needs to interpret an image or a set of images
in a medical context. The image content is only relevant when
considering the patient age and sex, the medical record for this
patient, sociological and environmental considerations, etc.
Beyond simple diagnosis, many other medical applications are
concerned with the data semantics and require rich metadata
content. For instance, epidemiology requires the study of
large data sets and the search of similarities between medical
cases. Physicians are often interested in looking for medical
cases similar to the one they are studying. A case may be
identified as “similar” because the image contents are similar



2

but this is often not sufficient to discriminate between a set
of acquisitions. There is a need to take into account metadata
on the medical case and results of computations done on the
images in the similarity criterion. Therefore, medical metadata
carrying additional information on the images are mandatory.

DICOM images indeed contain some acquisition-related
metadata in the image header. However, this in-file metadata is
often incomplete and not practical for data search and query.
Therefore, DICOM servers usually extract the in-file metadata
and store it in databases. In addition to PACS, hospitals
have a need for RIS (Radiological Information Systems). The
PACS archives the images and allows image transfers. The
RIS contains full medical records: image-related metadata
and additional information on the patient history, pathology
follow-up, etc. There exists no open standards for the data
structure and the communication between the services in this
architecture. Moreover, they are usually designed to handle
information inside an hospital but there is no system taking
into account larger data sets nor the integration with an
external component such as a computation/storage grid.

III. OVERVIEW OF THE ACCESS ARCHITECTURE

To respond the medical data management requirements we
propose aDistributed Medical Data Manager(DM2). The
DM2 is designed as a complex system involving multiple
grid services and several interacting processes geographically
distributed over a heterogeneous environment. It also provides
an access point to the grid services as well as an intermediate
between the grid and a set of trusted medical sites. To tackle
the DM2 complexity we chose to first propose an architecture
(Distributed System Engines, DSE [5] )and then to implement
our system as one possible instance of this architecture.

DSE services are composed of a set of independent pro-
cesses which interact by exchanging messages. The architec-
ture increases in semantic significance through five layers. The
lowest level, DSE0, is the message passing level enabling inter
processes communications. The DSE1 level brings atomic op-
erations (transactions) to process complex requests composed
of many messages. It offers the ACID properties: Atomicity,
Consistency, Isolation and Durability. The top layers deal with
distribution over several engines (DSE2), offer a programming
API (DSE3) and a user interface (DSE4).

The DM2 system is a particular instance of this distributed
architecture. DM2 (see figure 1) uses differentinternal tools
(TOol Drivers) : CACHE for improving the latency of access-
ing images,SECURITYfor access control over a sequence of
images,IMAGELIB for implementing operations (concatena-
tion, format) over the images. A DM2 server accesses external
services such asDICOM Storage Service Class Providers [1]
(DICOM TasK Driver and ReQuest Driver) andMYSQL to
access multiple SQL metadata databases (METADATATKD
and RQD) . TheGRID RQD submits jobs to MicroGrid (a
Computing Grid developed in our laboratories).

As an example, the DM2 engine is requested to execute
an hybrid query, ie. find out similar images between an
image database and a reference image. Such a request needs
computation of similarity measures between the reference

GRIDDICOM Metadata

DICOM RQD GRID RQD Metadata RQD

Metadata TKD

GRID TKD

DICOM TKD

GRID

tcp/ip

ip
c

ip
c tcp/ip

Cache TOD

DM2 API

DM2 QUDImage TOD

Security TOD

3

2

5
6

4

3

1

Fig. 1. DM2 architecture in use

image and each image. Figure 1 details the operation; on
top, the grid middleware triggers a DM2 hybrid query (as
an XML message) to get an image: (1) the engine first asks
for access authorization(SECURITY TOD)and for image
availability (CACHE TOD). (2) If access is granted and image
not available in cache, it accesses the database (metadata TKD)
to locate the DICOM files from which the image must be
assembled. (3) Thecache TODis requested again (the image
might not be in the cache while some files might be). (4)
Assuming the cache does not contain the requested file, it
should be copied from the DICOM server. The DM2 requests
the DICOM server through theDICOM RQDand retrieves in
parallel a set of DICOM slices that are assembled onto scratch
space to produce the 3D image requested. (5) The DICOM
files are assembled into a 3D image using animage TOD. (6)
Finally, the image is stored into the cache and returned to the
grid. This example is the one used in the experiment section.

IV. M ETADATA IN USE

Beyond simple patient-related metadata (age, sex, etc), the
metadata sould also include:

• image-related metadata: image dimensions, voxels size,
encoding, etc.

• acquisition-related metadata: acquisition device used, pa-
rameters set for the acquisition, acquisition date, etc.

• hospital-related metadata: radiology department respon-
sible for this acquisition, radiologist, etc.

• medical record: anteriority, miscellaneous information
explaining how to interpret this image, etc.

In addition to these medical metadata, external information
is needed for computation-related maters. First, medical data
are sensitive and should not be accessible by unauthorized
users. In a grid computing context, data are likely to be
transported between sites. They should no be readable by any
third party spying the network communications. Second, it
is often needed to track back data in order to assemble the



3

medical history of a patient. When producing a processed
image, it is important to know the original data used for
the creation of the processed image, the algorithm used and
its parameter settings. Third, metadata can be used for data
queries and computation optimizations. Computation on large
images are costly and data retrieval in large image databases
may represent untractable computation if image analysis is
needed and images have not been properly indexed. The
information related metadata therefore include:
• security-related metadata: authorization, encryption keys,

data access logging, etc.
• history-related metadata: image sources, algorithms, pa-

rameters, etc.
• optimization-related metadata: image index, query

caching, processing caching, etc.
As can be seen, some metadata are directly attached to

the image, while other are related to the hospital or the
patient. The metadata structure should therefore reflect these
relations between images and metadata. Some metadata is
static: it is either administrative information external to the
image (e.g.patient metadata) or bound to the image (e.g.image
metadata) with the same access pattern, same lifetime, etc.
Other metadata isdynamicallygenerated during computations.
We can therefore classify the metadata:
• Static metadata.

– External metadata: patient-related, hospital-related,
medical record, security-related

– Bound metadata: image-related, acquisition-related,
security-related

• Dynamic metadata: history-related, optimization-related
Metadata is often very sensitive, even more than the image

content itself: it contains all necessary information to identify
patients and the security elements such as access control infor-
mation and encryption keys. Most metadata can therefore only
be stored on trusted and secured sites where administrators are
accredited to manage such personnal data. Precise metadata
access policies must be enforced.

As stated above, an important feature of a medical infor-
mation system is its ability to retrieve relevant data for a
given application. Data may be selected on the image content
(by processing) or by taking into account its semantics (the
metadata). Often both are needed at the same time. We refer to
hybrid queries to designate queries of the information system
that involve both selection on data content and metadata.
Given the processing cost of image analysis algorithms, some
computation results may be stored as new dynamic metadata
bound to the images in order to optimize future computations.
These new metadata become image index.

A. Metadata for access control

Our proposed access control system requires some ammount
of metadata too. It uses certificates to store and transfer
permissions as presented in [14]. This section describes and
quantifies the metadata required by this service.

The data upon which we collect and store metadata is
divided into files. Please note that in this context the term
file designates a medical record and not a single physical file.

metadata type storage location device size
file-id to physical file bound storage-server DB <100 bytes
SOA to file-id bound storage-server DB <1 kbyte
file-id to file-set-id bound storage-server DB <100 bytes
CA certificate external storage-server File <1 kbyte
File transf. prog bound storage-server File varying
AC external storage-server, user DB <1 kbyte
AC revokation external storage-server DB <1 kbyte
Authentication certif. external user File <1 kbyte
Key-share bound third party DB <100 bytes

TABLE I

SUMMARY OF ACCESS CONTROL RELATED METADATA

We start by describing the metadata on the storage-server
that also holds the files. The initial storage-servers in our case
are the hospitals, but replica of the data might migrate secured
on the Grid for performance issues.

• A unique identifier for each file (file-id). Since the access
control system will span the entire grid environment, the
file-id is unique over the whole grid.

• A unique user identifier (user-id) of a single source of
authority (SOA) for each file. This SOA can issue access
permissions and appoint secondary sources of authority
for that file. We use RSA-public keys as user identifiers.

• If the file is an element in a file-set, a relation file-id to
file-set-id is stored (one for each file-set).

• The certificate(s) of one or more trusted certification au-
thorities (X.509 standard) that will allow to authenticate
issuers of requests and to verify signatures from SOAs
through a public key infrastructure (PKI).

• Should the file undergo some transformation before ac-
cess (typically an anonymization) or should some sort
of logfile be written for every access (for accounting
and data traceability) the programs that perform those
operations must be stored on the storage-server too.

• A certificate repository for external access. This enables
SOAs to provide permissions to users that are not cur-
rently connected or to provide generic permissions to user
groups.

• A collection of revoked certificates.

Other metadata is stored with the users using the grid
services to access files. These are:

• Their authentication certificates (standard X.509 certifi-
cates, size< 1 kbyte).

• Their attribute certificates. There are certificates granting
them access rights either to files or to file-sets (size<2
kbytes).

Finally, we have metadata stored with a third party. Since
files on the Grid are likely to be stored encrypted (using the
system proposed in [13]), the key-shares that enable users to
reconstruct the decryption keys will be stored on keyservers,
that are neither colocated with the user nor the storage-server.
These keyshares have a size of under 1kbyte too.

Table I summarizes all access control related metadata
together with its type, storage location, storage device and
approximate size.

The metadata thus provided is used to support a role-based
access control service (see [7] for further details on role based



4

Metadata column examples type storage location size
image storage server, image sizebound dm2 client 284 bytes
medical hospital, acq. date external storage-server 782 bytes
patient patient id, patient name external storage-server 264 bytes
DICOM dm2id, DICOM ID bound storage-server 260 bytes
log source image, algorithm dynamic dm2 client 192 bytes
cache dm2id, storage server dynamic dm2 client 128 bytes

TABLE II

SUMMARY OF MEDICAL METADATA

access control). This service allows to group users into roles,
and files into sets. Users or roles can be assigned permissions
to access files or file-sets. Additionally users or roles can
be assigned to be members in other roles, thus creating the
possibility for a hierarchic role structure. Such permissions are
stored in attribute certificates that are signed by the concerned
SOA or by a person that has been delegated to issue such
permission by the SOA. The SOA for files is stored in the SOA
to file-id relation. SOAs for file-sets and roles are encoded in
the respective file-set or role identifiers. Thus a storage server
can verify an access request solely based on his metadata and
on the ACs the user supplies with his request without the need
to contact a third party.

B. Metadata for efficient access

Once the authorization being granted to an user for access-
ing a data, the DM2 architecture effectively retrieves the data
itself. Two kind of queries are possible in the system : basic
and hybrid queries.

Basic queries involve metadata such as the file names, and
retrieve the set of files concerned by the query. This first set
relies on static metadata hold on a metadata database that links
each file with a relevant set of metadata, making the indexation
of the images easy. Metadata about a DICOM file include basic
information such as the size, the resolution, the acquisition
date, etc, but also adm2ID identifier that links this file to
the image file (fileid, introduced in section IV-A). Imagine a
query addressing an imageX of patientP . The system will
find all the images of patientP , then it must select the image
X, and also retrieve the relationship between the logical name
X of the image, and the set of physical files constituting the
imageX. It must also give their respective locations in the
grid, in order to be able to provide access to all needed files.

Hybrid queries associate a computation using the grid on
some images, as well as a simple query. Imagine the user
presents a source image to the system, and he wants to find all
patients aged between 40 and 60, having some images similar
to the source (the similarity measure resulting from some
image analysis algorithm). The complexity of the hybrid query
appears here clearly : First, the system must select the patients
in the given age interval, then it must start the calculation of
some potentially computation expensive similarity algorithm
on the grid, get the results and compare these to extract the
interesting cases.

Moreover, once the computation executed for one particular
image, the result of the algorithm (that might be either a single
number for a similarity measure -for the given example- or

any other document like an image or a set of images in other
more complicated algorithm) might also be stored and the
link with the original source image have to be preserved. For
each such dynamic new metadata, we generate an entry in the
metadata database linking the source image, the result, and the
algorithm being used. This allows again traceability as well as
optimization. Indeed next time the same algorithm will have to
be executed on the same image, the cached dynamic metadata
(the result) will be retrieved without time consumption. From
the previous example, if the user wants to narrow his search
for patients between 45 and 55, it will not be necessary to
restart the whole process but the cache will be used instead.

V. I MPLEMENTATION AND EXPERIMENTS

A. Implementation

The implementation of the system has been done in the
framework of the European DataGrid, but theDM2 archi-
tecture has been developed without much connections to this
grid, and only little adaptation is necessary to interface with
other grids.

Originally devoted to use Spitfire [3] for the metadata
database, which offers a secure layer above a MySql server,
the team used a simple MySql server for the sake of simplicity
and performance evaluation.

All the software has been implemented in C++ and the core
API of the architecture, as well as description of the metadata
and databases of theDM2 system can be retrieved fromhttp :
//www.creatis.insa− lyon.fr/ duque.

B. Experiments

We have made experiments stressing a server engine which
must access metadata before transferring a whole sequence of
images (i.e. a set of Dicom files). We have installed locally a
database having metadata (about localization).

For a set of images; we have installed also 8 client engines
which simulate up to 8 hospitals where real raw data is
stored. The experiment showed the response time when the
server engine receives at the same time one hybrid query
for each client engine, which means solving 8 hybrid queries
in parallel. Those 8 hybrid queries at the same time mean
querying metadata for those images and transferring 80 (8*10)
Dicom files in parallel (since 10 files compose one image). The
response is less than 3 seconds (2.8) for the first two queries,
about 3.4 for the third one, and so on. the whole set of queries
finishes at 4.5 seconds. In other words, one query takes about
3 seconds, but the set of 8 queries in parallel takes 4.5 seconds.
The metadata access for the hybrid query is 0.35 seconds for
each query.

We have also made some experiments for the access control
(that has been excluded from previous experiment to determine
its own cost), done via a tool driver. For each image, the time
to compute the authorization has been measured on a average
of 0.065s, and always below 0.1s. This time is composed of
the time to read and parse the request (which had 3 access
certificates), the time to access the metadata database twice
(one to determine the administrator of the data, one to verify



5

that the the file is part of a set), and finally to compute the
authorization decision based on these information.

This means :
tAC= 0.1 second (time for access control)
tMD= 0.35 second (time for metadata)
tD = 2.8-0.35 = 2.45 s (time for accessing data)

The time to access the data itself appears not surprisingly as
the most expensive part, and the impact of the access to the
different metadata with access control remains very limited
(16% of the time).

Regarding the openness of our architecture, one can add new
functionalities with minimal efforts. Indeed, new tools may be
added with specific tool drivers in the architecture. New usage
of metadata, ranging from access optimization, traceability, or
any other taking a benefit from the semantics of the data will
thus be easily addressed in the future.

VI. RELATED WORKS

The works on metadata management are very numerous,
especially in the database community and are used for in-
stance in mediators to aggregate schemas from heterogeneous
databases. In distributed systems, and more specifically in
High Performance architecture and more recently in Grid
Computing, some researchers addressed the metadata man-
agement problem. In 1999, Choudhary et al. [4] provides
a Meta Data Management System (MDMS) where system
metadata are used to distribute and retrieve the data in a
distributed system (according to its use in the application).
MDMS used a single MDMS provider (thus difficult to scale
well in Grid environments). Hybrid queries were not addressed
nor dynamic metadata or extension like security and caching.

The Metadata Catalog (MCAT) designed in the SDSC Stor-
age Resource Broker (SRB) [2] is very similar to our system.
It manages descriptive and system metadata, and the SRB uses
these to control and optimize the access to data. Differences
with our approach are (1) the ability of a collection of DM2s
to communicate in a distributed way (2) the management of
hybrid queries involving grid-related computation, and thus
the dynamic enrichment of metadata and (3) our role based
access control is more complete than in SRB.

More recently, Singh et al. [15] proposed a related work
to MCAT, the MCS (Metadata Catalog Service) designed to
handle logical metadata attributes. An application program
contacts a local MCS client, this MCS client opens a commu-
nication with a MCS server where the metadata are retrieved
from a MySQL database. Only basic queries are mentioned
in the article (no hybrid queries). Security relies on the Grid
Security Infrastructure (and in the future with the Community
Authorization Service [12]) that does not suit all our access
control requirements (see [14]). The study of the scaling of
the architecture does not address the connections of numerous
clients on the unique MCS server. The authors describe a
general service for logical metadata access. We argue that our
architecture has been designed in a general way and that it
opens parallel and complementary researches for interleaving
access-to and computation-on data and metadata, when the
dynamic of both have to be handled.

Finally, the RepMec [11] catalog developed in the European
DataGrid project, using Spitfire [3], is very similar to this
latter, but is used mainly for file localization in the Grid.

VII. C ONCLUSION

We presented in this article an extensible architecture that
allows for secure and efficient access to medical data through
the management of metadata. In our medical application, we
have identified static and dynamic metadata, and we have
exhibited the adequation of our platform for their handling,
in terms of performance and scalability. We try here to extract
some general methodologies to improve the management of
sensisitive and dynamic metadata. We contribute through the
Metadata Management group at the Global Grid Forum to
help to propose an architecture for metadata management in
OGSA [9].

REFERENCES

[1] N. E. M. Association.Digital Imaging and Communications in Medecine
(DICOM). Rosslyn, Virginia, 2001. DICOM 3.

[2] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The SDSC storage
resource broker. InProceedings of CASCON’98, Toronto, Canada, 1998.

[3] W. Bell, D. Bosio, W. Hoschek, P. Kunszt, G. McCance, and M. Silander.
Project spitfire - towards grid web service databases, 2002.

[4] A. Choudhary, M. Kandemir, H. Nagesh, J. No, X. Shen, V. Taylor,
S. More, and R. Thakur. Data management for large-scale scientific
computations in high performance distributed systems. InProceedings
of the Eighth IEEE International Symposium on High Performance
Distributed Computing, pages 263–272, Redondo Beach, CA, USA,
1999. IEEE Computer Society Press.

[5] H. Duque, J. Montagnat, J.-M. Pierson, I. Magnin, and L. Brunie. DM2:
A Distributed Medical Data Manager for Grids. InBiogrid 03, Tokyo
May 12th to 15th 2003, proceedings of the IEEE CCGrid03, 2003.

[6] European Data Grid. The datagrid project. http://eu-
datagrid.web.cern.ch/eu-datagrid/, 2001.

[7] D. Ferraiolo and D. Kuhn. Role based access control. In15th NIST-
NCSC National Computer Security Conference, pages 554–563, 1992.

[8] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure
toolkit. The International Journal of Supercomputer Applications and
High Performance Computing, 11(2):115–128, Summer 1997.

[9] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of
the grid: An open grid services architecture for distributed systems
integration, 2002.

[10] A. S. Grimshaw, W. A. Wulf, J. C. French, A. C. Weaver, and P. F.
Reynolds Jr. Legion: The next logical step toward a nationwide virtual
computer. Technical Report CS-94-21, University of Virginia, 8, 1994.

[11] L. Guy, P. Kunszt, E. Laure, H. Stockinger, and K. Stokincker. Replica
management in data grids. Technical report, Global Grid Forum
Informational Document, GGF5, Edinbourg, Scotland, July 2002.

[12] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke. A
community authorization service for group collaboration. InProceedings
of the 2002 IEEE Workshop on Policies for Distributed Systems and
Networks, 2002.

[13] L. Seitz, J. Pierson, and L. Brunie. Key management for encrypted data
storage in distributed systems. InProceedings of the second Security In
Storage Workshop (SISW), 2003.

[14] L. Seitz, J. Pierson, and L. Brunie. Semantic access control for medical
applications in grid environments. InEuro-Par 2003 Parallel Processing,
volume LNCS 2790, pages 374–383. Springer, 2003.

[15] G. Singh, S. Bharathi, A. Chervenak, E. Deelman, C. Kesselman,
M. Manohar, and S. Patil. A metadata catalog service for data intensive
applications. InProceedings of the ACM/IEEE SuperComputing 2003
Conference, pages 33–49, Phoenix, AZ, USA, 2003. IEEE Computer
Society Press.


