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Abstract

Medical data represent tremendous amount of data for which automatic anal-
ysis is increasingly needed. Grids are very promising to face today challeng-
ing health issues such as epidemiological studies through large image data sets.
However, the sensitive nature of medical data makes it difficult to widely dis-
tribute medical applications over computational grids. In this paper, we review
fundamental medical data manipulation requirements and then propose an ar-
chitecture (Distributed Systems Engines - DSE) for building high performance
Distributed Systems dedicated to medical image processing. We show how the
DSE were used in developing a Distributed Medical Data Manager that addresses
the medical data and security challenges.

1 Introduction

Recently, computational grids [11, 12] encountered a large success among the
distributed computing community. Many technical developments aim at pro-
viding a middleware layer for submitting remote jobs [2, 6, 13], storing data [5],
and monitoring a distributed system [24]. But most importantly, from the user
point of view, grids should provide transparent access to distributed resources
and ease data and algorithms sharing

Medical data analysis is a domain where grid technologies are very promis-
ing. Health centers are using an increasing number of digital 3D sensors for
medical data acquisition, representing tremendous amount of data for which
automatic analysis is needed. Grid technologies offer: (i) an increased comput-
ing power for complex modeling and simulation algorithms, (ii) a distributed
platform with shared resources for different medical partners with similar data
processing needs, (iii) a common architecture to access heterogeneous data and
algorithms for processing, and (iv) the ability to process very large amounts of



data, e.g. for epidemiological studies. To adapt the middleware layer to med-
ical application needs, it should take into account the particular constraints
associated to medical data. Although weakly structured, medical data have a
strong semantic and metadata are very important to describe data (e.g. images)
content. Furthermore, medical data are sensitive and should only be accessible
by accredited users, which makes data manipulation over a wide area network
difficult.

Managing large databases of medical images in a Grid environment is a
challenge. Users (patient, medical staff, researchers) need to query medical
databases using complex access patterns involving both metadata related to
each patient record and image content analysis. These kind of queries imply:

e To preprocess the images in order to generate indices useful for image
retrieval. Image processing allows to extract information such as his-
tograms, texture parameters, etc, considered as metadata here. Other
metadata include patient related information (name, age, ...), diagnostic-
related, and therapy-related information.

e To analyze on-the-fly images when one query arrives, in order to extract
features from the image. This implies performing computations before
returning results to the user.

Other medical data management related challenges include data and pro-
cessing distribution, high performance, structured semantics, massive storage,
security and image processing techniques. While some of these problems are
tackled easily by current Grid implementations, much of the work to interface
securely the medical data and the Grid infrastructure remains to be done. In
this paper we detail the motivation and the difficulty of distributing medical
data on the grid, then we propose a novel modular distributed system for deal-
ing with this kind of data and an architecture for building each component of
this distributed system.

This paper is structured as follows. We first detail in section 2 medical
data requirements and the related issues for Grid computing. In section 3 we
propose a novel data management architecture. We show in section 4 how it
can be used for developing a Distributed Medical Data Manager [10]. Our
implementation is based on some of the European DataGrid project (EDG)
middleware services [7]. Finally, we show results in section 5 and a conclusion
gives the perspectives of the project.

2 Medical applications

2.1 Medical Data

Although there is no universal standard for storing medical images, the most
established industrial standard is DICOM (Digital Image and COmmunication
in Medicine) [9]. DICOM describes both an image format and a client/server
protocol to store and retrieve images on/from a medical image server. Most
recent medical imagers implement the DICOM protocol. They play the role



of acquisition device and image server communicating with their clients over
a TCP/IP hospital network. The DICOM file format is made of a header
containing metadata followed by one or several image slice(s) in a single file.
To the original metadata, users often want to associate additional metadata
that are not originally part of the image acquisition such as notes taken by
medical experts.

Today, medical data are often stored and archived inside each medical im-
age producer (hospitals, clinics, radiology centers...). The medical record (im-
age files and metadata) of one patient is distributed over the different medical
centers that have been involved in his health care. Medical data are usually
disconnected from the outside world to solve security issues. Several Picture
Archiving, Communication (PACS) [14] and Radiology Information Systems
have been developed to provide data management, visualization, and, to some
extent, processing. However, they are restricted to data management inside
each hospital and hardly address the problems arising when considering a global
system with communication of sensitive data between sites.

2.2 Requirements for medical data on the Grid

Data management and replication mechanisms [22] proposed by grid middle-
wares mainly deal with flat files. Data access control is handled at a file level. In
the DataGrid project for instance, user authentication relies on the asymmetric
key-based Globus Grid Security Infrastructure layer (GSI) [3]. This infrastruc-
ture does not take into consideration metadata and does not address patient
record distribution. Therefore, we investigate the creation of a Distributed
Medical Data Manager unit (abbreviated as DM? later in this document) that
interfaces with the grid middleware. It should provide:

e Reliable and scalable storage for images and metadata produced by med-
ical imagers. This includes connection to the grid file replication mecha-
nism and a metadata location service granting access to distributed med-
ical records (see section 3.1 for details). To face scalability and reliability
issues in a wide area environment, replication of metadata also appears
necessary.

e Data and associated metadata should be synchronized by the information
system as they are semantically connected (they should have the same
lifetime, same access patterns...).

e Secure communications, encryption, integrity checking, authentication
and a distributed access control mechanism are needed to secure the data.

Processing or querying data over a grid raise the problems of confidentiality
and confidence that the user may have in the grid security infrastructure. Ide-
ally, medical data should not be accessible by any unaccredited user, including
system administrators of sites where the data are transported for computation.
To ensure a reasonable confidentiality level, we plan to decouple the sensitive
metadata from the image data. The metadata will only be stored on a limited
number of trusted sites, where administrators are accredited, and the system



will not send it to non-accredited user stations. The image data can be stored
and replicated in encrypted form and will only be decrypted for manipulation,
thus reducing vulnerability to content retrieval.

2.3 Illustration through usecases

To illustrate our proposal for a distributed medical application, we will consider
a cardiologist making a diagnosis for a patient whose medical data is stored in
the system. He needs to access its patient data and to query the system to find
similar cases.

Accessing medical data. For accessing the data a software transpar-
ently communicates with the Grid storage facilities. A medical application first
queries the data location service to get the location of the images since the
records of a patient might be spread over multiple hospitals. Second, it gets the
set of DICOM slices from the selected hospital (a 3D image is often stored has a
set of files, each representing one slice in DICOM format). Slices are assembled
in a single 3D image that is returned to the cardiologist for visualization.

Content-based image search. The cardiologist looks for heart images
similar to the one he has just acceded in order to confirm his diagnosis. He wants
to rank existing images through a similarity score resulting of a computation
involving his patient image and an image database. Once the images are ranked,
he needs to visualize the most similar cases and their attached diagnoses. The
diagnosis he makes for his patient can be stored in the information system
enriching the global knowledge as well as the patient record.

3 DM?: A Distributed Medical Data Manager

We propose a Distributed Medical Data Manager. Such a distributed system
is made of several interconnected computers and a shared state describing the
cooperation of these computers [16]. To respond the requirements described in
section 2.2 and the above usecases the DM? is designed as a complex system
involving multiple grid service interfaces and several interacting processes geo-
graphically distributed over an heterogeneous environment. It is an access point
to the grid services as well as an intermediary (proxy) between the grid and a
set of trusted medical sites. Its complexity has motivated us to first propose an
architecture describing the DM? components and second to implement our sys-
tem as one possible instance of this architecture. To tackle the DM? complexity,
we propose the multi-layers architecture outlined in section 3.2. We also need
to interface the DM? with underlying grid services as detailed in section 3.1.

3.1 Interface between grid data storage services and medical
servers

A grid middleware, such as the EDG (European Data Grid) middleware, pro-
poses a standard storage interface to the underlying mass storage systems.
Through this interface, the middleware may access files on distributed and het-
erogeneous storage pools. Grid-enabled files are handled by a Replica Manager



(RM): to ensure fault tolerance and to provide a high data accessibility service,
files are registered into the RM and may be replicated by the middleware in
several identical instances. The first file registered into the RM is a master
file. Other instances are replicas. When a file is needed, the grid middleware
will automatically choose which replica should be used for optimizing perfor-
mances. Having multiple instances of a file also increase its availability since
connection errors are likely to happen in a wide scale distributed system. To
solve coherency problems, replicas are accessible in read only mode and mod-
ifying a master file invalidates all its replicas. To ease files manipulation, grid
wide Logical File Names (LFN) are used to identify each logical data (i.e. a
master and all its replicas).

In the hospital, each image can be made up of one or several DICOM files
representing portions of the imaged body. The DM? plays a double role to
interface DICOM servers with the grid middleware as illustrated in figure 1:

For each new DICOM image or set of DICOM images (depending on the
semantic of the DICOM series) produced by an imager, a LFN is created and
registered into the RM. The DICOM files thus becomes, from the grid side, a
master file. There is not necessarily a physical file instance behind this LFN
but rather a virtual file made up of a set of DICOM files, that can be recon-
structed on the fly by the DM? if a request for this LFN comes in. For efficiency
reasons, assembled files are cached on a scratch space before being sent outside.
The DM? also stores metadata and establishes a link between an LFN and its
patient- or image-related metadata.

The DM? storage interface ensures data security by anonymizing and en-
crypting on the fly images that are sent to the grid. Replicas of a medical
image may exist on any grid storage node, given that encryption forbids data
access without decryption keys. These keys are stored with the patient-related
metadata on trusted sites only. In order to ensure data integrity, the grid stor-
age interface does not allow the master files stored on the DICOM server to be
deleted.

Grid Middleware
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Figure 1: DM? interface between the medical imagers and the grid



3.2 Layered architecture

The DM? needs to interconnect with existing grid services on the internals
of which we have no control . We will refer to engines to designate the DM?
services that we develop to avoid confusions. Each engine is composed of a set of
independent processes which interact by exchanging messages. We design each
Distributed System Engine (DSE) through a layered architecture that takes
into account the requirements for high performance and data integrity. The
architecture increases in semantic significance through five layers (see figure 2).
At the lowest level, DSE?, the system is made of processes that communicate
through a message passing kernel. The DSE! level brings atomic operations
(transactions) to process complex requests composed of many messages. The
upper layer DSE? deals with distribution over several engines. On top of the
distribution layer come the application (DSE?) and the user interface (DSE*).
This section further describes each layer’s role.

DSE2: distribution
‘ DSEL: transaction ‘

Level

Semantic

‘ DSEQ: message passing ‘

Figure 2: DSE layers

3.2.1 DSE’: message passing

The core of the DSE? is a message passing kernel in charge of the efficient trans-
mission of messages between the DM? processes. Our kernel implementation
is based on Inter-Process Communication (IPC) services. The DSE? transmits
messages between the IPC kernel and the external network for access to both
local and remote services.

Well known message passing infrastructures such as PVM or MPI, imple-
ment a message passing for accelerating processing and reaching a high perfor-
mance level. DSE uses message passing to build high performance distributed
systems. PVM/MPI emphasize on processing power (parallelism) while DSE
emphasize on the performance of distributed systems that are sharing informa-
tion (concurrent messages exchanges). DSE? is a message passing mechanism
designed to interconnect local processes inside an engine, not for doing remote
operations. Using PVM/MPI at this level is unnecessarily costly.

3.2.2 DSE!: transactions

On top of the simple message transportation layer, DSE! implements atomic
operations (transactions) made of multiple sub-operations. A transaction suc-
ceeds if and only if all sub-operations succeed. If a failure occurs the system is

2applications which are not developed for us



left in a coherent state. It offers the ACID properties: Atomicity, Consistency,
Isolation and Durability [16].

We deal with three types of transactions that we call as Queries, Tasks and
Reguests. This allows us to deal efficiently with the complexity of transactions
which involves multiple calls to external services and engines. Queries are a
set of Tasks and Requests which can be executed in sequence or in parallel.
Similarly, Tasks are a set of Requests executing concurrently to shorten the
processing time. Requests are a set of sequential messages to a service in the
network side. Queries, tasks, and requests are implemented as specialized pro-
cesses that we will call as drivers. A driver is a process handling different kinds
of transactions instead of only messages:

e The QUeries Drivers (QUD) are processes managing a whole transaction
(query) made up of a set of Tasks and Requests. A query could imply
concurrent or sequential access to different external services. A Query
could be implemented as accessing a TKD but also having direct access to
a RQD. This means that a query could be implemented without tasks but
only with requests.

e The TasKs Drivers (TKD) are processes in charge of a specialized part
of a query. This could imply getting parallel access to an external service
throught a set of request drivers. TKD offers parallelism, distribution and
transparency as a service which could be used by a QUD; e.g, a QUD
requests a file to a TKD, but it does not check the localization of the file:
the TKD can get it from cache, from a local hospital or from a remote
hospital in a transparent way to the QUD. In order to find out the file,
the TKDs uses the stuff of availables RQD in the engine.

e The ReQuest Drivers (RQD) are in charge of accessing the remote com-
ponents such as other engines and external servers. They solve low level
issues such as connection management. These drivers transmit messages

and receive responses that they route to the calling processes P.

e The TOol Drivers (TOD) are processes performing internal operations
that are independently implemented for reasons of performance and mod-
ularity. Ezxamples of such processes are the caching of requests, files and
results, logging, security checking, image processing and manipulation con-
sole operations. Tool drivers can be accessed from QUD, TKD and RQD.

A DM? engine works as follows: (i) A message is received by a query driver
and a query is initiated, (ii) The query starts different concurrent tasks, using
independent processes (TKD), (iii) Each task get access to the requests drivers
(RQD) so that it can reach the external services, (iv) The request drivers (RQD)
open connections and send messages to the external services, (v) Each driver
uses the tools it needs (TOD). See section 4.5 for a detailed example.

®In order to improve concurrency and to allows easy modular software development, there
is a relationship 1 to N between the processes of QUDs and TKDs; similarly, a relationship 1
to M between the processes of TKDs and RQDs. This means that one query could be splited
into N tasks, and each task could access in parallel an external service through a multiprocess
RQD



3.2.3 Upper layers

DSE? brings additional distributed facilities on top of the two lowest levels. It is
in charge of localizing data and services, transmitting requests to proper hosts,
collaborating between DSE engines, etc. It may take advantage of completely
decentralized Peer-to-Peer (P2P) techniques [15] or to semi-hierarchical tree
structures such as LDAP for distributed data localization.

DSE? is the application layer, offering a programming interface (API) so
that an application can be built on top of the underlying distributed system.

DSE* is the user layer. It offers high level access to data, metadata and
algorithms registered in the system. It can be implemented as web portals
or graphical applications. For instance, a user might have access to similarity
algorithms published by the DM? architecture (through this portal) that he
wants to apply to a subset of images (according to his access rights).

4 DM? implementation and usage

A prototype is currently under development to demonstrate the relevance of
the proposed architecture in realistic medical applications. At the moment,
we have implemented the interface to a DICOM server ¢, metadata handling
through SQL tables with a secured access interface (which is based on spitfire)
[1], but we do not have a fully secured and distributed system yet. Our pro-
totype is therefore an assembly of DSE?, DSE! and DSE? processes (message
passing, transactions ¢ and application functions) following the above architec-
ture. Nevertheless, it is still usable to evaluate these processes in realistic world
as described below.

4.1 DM? software components

To illustrate our approach and the implementation being developed we chose
the usecases described in section 2.3. In order to set up this application we
implemented:

e A set of request drivers for sending requests to and getting results from
the grid services. The DICOM RQD accesses the DICOM server where
medical images are stored. The metadata RQD is a driver for the database
service where image metadata are stored.

e Each of these services has an associated multiprocess task driver which
is able to execute concurrent demands. The DICOM TKD can make
parallel transfer of DICOM files for instance.

e In addition, a communication daemon QUD has been implemented in
order to receive messages from the network side and to start the execution
of queries. The secondary role of this daemon is to manage the load on the

¢Central Test Node, http://www.erl.wustl.edu/DICOM /ctn.html
dthree types: query, task and request



server by initiating as many parallel transactions as possible for efficiency
while queuing requests when needed to avoid system overflow.

4.2 Extensibility and Interfaces

The architecture allows external applications to interact with the distributed
system, and to execute locally on the same node or remotely. The system
can access other servers offering additional services (e.g. grid services) or be
accessed by clients trying to take advantage of the DM? services.

A low level API has been developed in order to offer message passing capa-
bilities (layer 0) to an independent system which wants to connect to a DM?2.
Those systems must be registered © into the DM? and they have to use the DM?
messages passing API. The API offers functions to send and receive messages
to from a DSE, using classical synchronous or asynchronous techniques.

It hides the complexity of the message passing mechanisms, makes trans-
parent the IPC calls to the operating system and standardize the message ex-
changed.

For example, a function for receiving asynchronously a message into a stan-
dard list of arguments (msg_argv and msg_argc) or into a text (buffer), in a
microseconds timeout interval, is the following;:

retcode=DSEclient_ASYNCRcv(my_DM2_ID, buffer,
&op_code, &msg_argc, msg_argv, DSE_API_TIMEOUT_USEC,
&msg_fm, &snd_response) ;

in this function an operation code (op_code) was sent to the process which is
waiting for the message (my_DM2_ID) and it is also informed whether response
is expected by the caller or not (snd_response). In this way additional functions
such as cache, security, files transfer and encryption, database accesses, image
tools, etc, can be easily interfaced, and designed as independent modules for
easing software development.

4.3 Security

As mentioned before, security is one of the main requirements for applications
concerning medical data. Due to the highly confidential nature of medical data
it needs to be protected against the following threats: Unauthorized reading,
modification, deletion and knowledge of existence. We think that the advan-
tages of using computational grids for medical image treatments outweigh those
threats, therefore we need to implement countermeasures to protect the data.
Our measures must be designed to provide trustworthy security to patients data
and the usefulness of the grid should not be negated by applying them.
Fortunately, grid computing security can be based on existing solutions.
Classical solutions for secure transfer, authentication and integrity checking

°to be registered into a DM? engine means that this engine was configured to accept
connections from a specific external application, and this application makes a greeting process
with it.



services exist and have been applied to grid computing without major mod-
ifications. Common solutions such as TLS/SSL, IPSec and SSH provide these
services (although a secure public key distribution mechanism is needed for
the authentication part). Grid framework architectures such as Globus-GSI,
DataGrid-WP7 f and OGSA Security Architecture & implement these solutions
for grid usage.

However, none of the existing implementations are fully satisfying medical
data management constraints. The most important security components is
access control. The reason that makes access control special in grid environment
is that the data leave the sphere of influence of their owner (preferably this will
even be transparent to the owner) and are stored on systems on which he has no
control. In order to provide a flexible access control system, we have designed
an architecture outlined in [21] that not only respects the limitations mentioned
before, but also provides the following functionality:

e Rights granting based on semantic criterions, i.e. granting the right to
access all my dental data to all doctors of the X dental clinic, where
my dental data and all doctors of the X dental clinic are the semantic
attributes that need not to be specified in the access granting process.

e Possibility of fine granular rights granting, i.e. granting the right to access
one specific piece of data to one specific person.

e Storage location independence, i.e. the person owning an access right
should be able to access any grid replica of the data.

e Offline delegation, i.e. data owners should be able to grant access rights
even if they are not logged onto the system where the concerned data is
stored.

The classical solutions for access control, such as RBAC or ACLs rely on central-
ized authorization granting, an architecture that does not provide the required
scalability in grid environments. Solutions for distributed or grid access con-
trol such as Globus-CAS [17], DataGrid-VOMS, OASIS [25], AKENTI [23] or
PERMIS [4] do not provide for all of the flexibility specified above. Therefore
we have decided to design our own access control system, consisting of three
cooperating structures:

1. Signed electronic documents called semantic access certificates (sac). Those
SACs specify the person to which it is granted (owner), the person which
issues it (issuer), the concerned data, allowed access modes and a validity
period. Their integrity is ensured by a digital signature from the person
who grants them. The person identifiers can be based on their public
key, whereas the identifiers for specific files are made by concatenating
the owners identifier with a hash of their content. The advantages of the
SACs are that they can be granted offline and provide for fine granular

fhttp://eu-datagrid.web.cern.ch/eu-datagrid
8globus; http://www.globus.org
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4.4

access control decisions. Through the mechanism of creating the file iden-
tifiers, they are not dependent of the storage location of the data and no
further security measures are needed to protect SACs against theft, since
to use them one would either have to authenticate as the specified owner
or change them and forge a signature of the issuer.

The less fine granular access control decisions are made possible by adding
semantic parts to the SACs. This means to replace unique user or file
identifiers by a general specification of the group of users or type of data
for which the SAC should apply.

. On the server side an access control module must be running, that checks

requests against SACs provided with them and evaluates their semantic
parts, if any are used. This module can also enforce access logging, check
certain perenity conditions if data is to be deleted or modified and provide
special access modes such as anonymized access through the use of owner-
specified access modules.

. To provide the data needed by those systems, we will need to keep a

certain extra amount of metadata with the data stored on the grid. We
will interface with the metadata RQD and TKD through DSE to store
and to retrieve those metadata.

A user pseudonymization system could also be provided, by allowing us-
ing the public key of a data owner as identifier, without disclosing who
owns this key. It should then be permitted to data owners to use several
public/private key pairs, to limit the damage if the owners identity of one
of them becomes publicly known.

The system will be implemented as shown in step 1 of figure 3, as tool
driver of the DSE system. It will be called first when a query arrives and
provide a permission granted/denied decision to the rest of DSE.

Cache

The system performance is sensitive to the quality of the link to hospitals where
the DICOM files are stored. This is the reason why the DM? uses several levels
of cache in order to improve the latency of accesses:

First, there is a request caching layer. The goal is to cache requests
and results in order to have a high probability of finding precomputed
responses [19] to incoming queries to the system.

Second, the complete image is expected to be resident into the cache area
(image caching layer).

If not, the file caching layer works in order to find out some DICOM files
(image slices) in the cache area.

Finally, having no other option, DICOM files are transfered in parallel
from the hospital, then registered into the cache. The image is assembled
and also registered into the cache.

11



e All this process is started once somebody initiate a getDM2Image query
to the DM2. But before that, the Grid Replica Manager[8] looks for the
required file anywhere into the Grid. This is really, the first level of cache
for the DM?2.

4.5 Application Layer.

Starting from the detailed usecase described in section 2.3, we will show the
use of DSE (see figures 3 and 4).

First, the cardiologist enters a query (e.g. to find the MRI of Mr X ac-
quired yesterday in this hospital) through the DM? user interface. The DM?
sends the request to the grid metadata interface through the metadata RQD
and TKD. The user authorizations to access the data are checked by the se-
curity TOD (step 1 of figure 3a) and the patient file logical identifier and its
associated parameters (imaging modality, region of interest, dynamic sequence,
MR acquisition parameters, etc) are returned to the user interface.

A request is made to find all images (see step 3 of figure 3b) comparable to
the image of interest (same body region, same acquisition modality...) and for
which a medical diagnosis is known. The DM? layer 2 should be used here to
distribute the requests on all hospitals with metadata services. In the current
implementation one single metadata service is queried through the metadata
RQ@D and TKD again. The logical identifier of all images matching the patient
source file parameters are returned.

r Q G Y Q TPIg.
DM2QUD DM2QUD
1 Q 1 2 1

I
1
RN
1,1 /4 N 1 1
1 ! 1 1
Security TOD .
Y 1 1 1
LI R 1 ! GRID TKD
cachetop 1/ | 1
1 = 1
P 1
1 1 Metadata TKD 1 - 1 Metadata TKD
g teplip g toplip a--" »
Q\l/)MetadaiaRQD DM2RQD<\L> GRDRQD(\]/) Q\l/)MetadaiaRQD
[raneove]  [Tomo | [wasaa

(a) (b)

Figure 3: DSE? usage example: a hybrid query .
(a) 1-Security check 2- Cache query for stored results, (b) 3- A distributed request is issued
to find all images comparable to the image of interest, 4- similarity measure process is issued
to the Grid. See section 4.5)

A request is then made for the computation of similarity measures [18, 20]
between the patient image and each image resulting from the query (see step
4 of figure 3b). The job submission service of the grid middleware is used to
distribute computations over available working nodes. For each job started, the
grid replica manager triggers a replication of the input files to process onto grid
computation nodes. If the requested files are not registered into the Grid (as

12



a replica), they are requested by the Grid to the DM? storage interface. The
distant DM? asks the DICOM server, assembles MR images on the fly onto its
scratch space and returns images to grid nodes.

Figure 4a details the operation; on top, the grid middleware triggers a DM?
query for getting an image: (1) It first asks for the image to the cache TOD. (2)
If that image is not available it then accesses the database (metadata TKD) to
locate the DICOM files from which the image must be assembled. (3) The cache
TOD is requested again in order to improve the DICOM file’s latency access.
(4) Assuming the cache does not contain the requested file, it should be copied
from the DICOM server. The DM? requests the DICOM server through the
DICOM R@D and retrieves in parallel a set of DICOM slices that are assembled
onto scratch space to produce the 3D image requested. (5) The DICOM files
are assembled into a 3D image using an image TOD. (6) Finally, the image is
stored into the cache and returned to the grid - See step 2 in figure 3a.

some code at layer 3

DM? offers to the clients an APT at application level (layer 3) allowing them to
write a very simple C/C++ program to do the above process, as follows:

strcpy(requestToDM2, WHERE patientID="MR X" AND date="14May2003");

ingdm2image (&RequesttoDM2, &Imageslistforpatient);

strcpy(DM2imageid, Selectimagefrom(Imageslistforpatient));

ingDM2image (DM2imageid, &Algoparametersforimage) ;

ingDM2image (DM2imageid, &ComparablerequesttoDM2,
&Algoparametersforimage, &Comparableimageslist);

ingDM2image (DM2imageid, &Algoparametersforimage,
&Comparableimageslist, &Similarimageslist);

7 for (Img=0; Img<N; Img++){

Myprocess(Similarimageslist [Img]) ;

() O d WN -

o]

9 }

For simplicity we don’t include variable definitions. At line 1 and 2 we build a query
to the DM? system in order to get a list of images for the patient “Mr X” which were
acquired in an specific day. One of those images is selected (line 3) considering a user’s
defined criterion, parameters of interest for a similarity algorithm are computed (line
4), and then an image database is queried (lines 5 and 6) to get similarity measures
against the selected image . A list of similar images is returned (line 6) and the user
starts his process (lines 7 to 9) to do the image processing tasks.

5 Software evaluation

We have done a simulation of the system’s behavior for the moments of highest traffic.
So far, our test corresponds to the reception of N simultaneous queries for images,
which means starting N getDM2Image queries (as it was discussed in section 4.5) in
parallel .

We use a PC cluster made of 6 processors Intel Pentium 4 with 1 GB in memory.
Each machine has a DICOM server in order to simulate 6 hospitals. Those machines

bthis process must access the Grid in order to take advantage of its computing power
because computing similarities issues are usually heavy to process

13
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Figure 4: Usage Example and Experiment
(a) retrieving a medical image from the DICOM server (a set of 2D slices composing a 3D
image for instance) , (b) solved image queries in the first 45 seconds when the number of
hospitals grows up to 6.

are accessed from a remote server (Pentium 4, 1.7 Ghz, 512 MB RAM) where a DM?
engine was installed. There is a network of 100 Mbits between them and a firewall
controlling access. The engine was configured with 6 DICOM RQD, having each one 3
concurrent processes. We:

e Use images composed of 3 slices each
e Use slices (DICOM files) of 0.5 MB and then transfer in parallel
e Assemble an image of 1.5 MB (0.5MB x 3) each time.

e Deliver until 38 local messages per transaction (using the IPC resource queue
message of the operating system). This is refereed to messages going between
the different drivers (QUD, TKD, RQD and TOD, inner the engine) without
considering the remote messages

o Start one query transaction by image requested and 1 task by slice into the image,
which means 3 tasks in parallel by requested image (each query started).

e Open 3 channels per DICOM server, which means 18 concurrent channels (18
DICOM file transfers in parallel).

Figure 4b shows the engine’s behavior in number of solved queries during the first
45 seconds, when we have different number of concurrent machines (hospitals). The
engine processes 26.3 transactions in the first 45 seconds when images are recovered
only from one hospital, but up to 105 transactions in the same period of time, when
images are simultaneously recovered from 6 hospitals. This means an speed-up from 1
to 4 when available machines have increased from 1 to 6. We consider it very promising
because of the asynchronous nature of DICOM transmissions.

6 Conclusions

Medical image processing over the grid opens new opportunities for applications involv-
ing large medical datasets analysis. However, full deployment of medical applications
require medical sites to be interconnected and grid middlewares to provide secure and
efficient access to the distributed and sensitive medical data. The semantic content
of medical data should also be taken into account by developing grid-wide tools to
manage associated metadata.

14



The architecture proposed in this paper allows us to build a complex distributed
system, taking advantage of classical theory (transactions concept) and proposing so-
lutions to implement a high performance data manager (decomposition of queries in
concurrent tasks and requests). The DM? system allows the physicians to get secure
access to their patients’ images and to send hybrid requests over huge databases.

We implemented a first prototype to demonstrate the relevance of the DM? for
realistic medical applications. The stressing tests and the interfacing experiences with
other projects, show that results are promising about performance and extensibility.

While developed in the field of medical image management, our proposal could be
generalized to many distributed systems where security has to be enforced.

On-going work concerns data security, caching, distribution, hybrid requests and
content based queries. Many other aspects related to medical data management were
not addressed in this paper including the need for tracking data origin and logging data
processing.
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